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The analysis of dynamical systems in terms of spectra of singularities is extended 
to higher dimensions and to nonhyperbolic systems. Prominent roles in our 
approach are played by the generalized partial dimensions of the invariant 
measure and by the distribution of effective Liapunov exponents. For hyperbolic 
attractors, the latter determines the metric entropies and provides one 
constraint on the partial dimensions. For nonhyperbolic attractors, there are 
important modifications. We discuss them for the examples of the logistic 
and Hrnon map. We show, in particular, that the generalized dimensions 
have singularities with noncontinuous derivative, similar to first-order phase 
transitions in statistical mechanics. 

KEY W O R D S :  Dynamical systems; generalized dimensions and entropies; 
Liapunov exponents; scaling functions; hyperbolicity; phase transitions. 

1. I N T R O D U C T I O N  

The purpose of the present paper is twofold. On one hand, we want to 
extend the formalism of spectra of singularities ~1 3) to higher dimensional 
strange attractors, i.e., to objects that are not locally isotropic. On the 
other hand, we discuss the applicability of the thermodynamic approach ~4) 
to nonhyperbolic dynamical systems. 

The first problem arises from the fact that strange attractors cannot be 
completely described by a hierarchy of generalized dimensions, (5 7) but 
require the concept of "partial dimensions. ''(8 10) Just as the fractal dimen- 
sion measures the growth of the mass p(e) of an object with its overall size 
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e, a partial dimension characterizes the same growth when the size is 
changed only along one direction. In the context of chaotic dynamical 
systems, these directions are tangent to the local stable and unstable 
manifolds. 

In the analysis of nonuniform fractals, i.e., those in which the 
pointwise dimension ~11) ~(x) assumes more than one value, a scaling 
function f (~)  has been recently introduced ~1-31 to characterize the spectrum 
of "singularities" ~. The function f (~)  can be interpreted as the Hausdorff 
dimension of the set of points x with the same pointwise dimension ~. An 
extension of this formalism to nonisotropic fractals is not straightforward, 
since it is not a priori clear whether one should replace f (~)  by partial 
Hausdorff dimensions, or ~ by partial pointwise dimensions, or both. 

Analogously, considering the distribution of orbits in the space of 
trajectories, instead of the distribution in phase space, it is possible to treat 
generalized metric entropies by using scaling functions. ~12~ 

Furthermore, both generalized dimensions and entropies can be 
related to the spectrum of effective Liapunov exponents, which describe the 
evolution of infinitesimal regions in phase space during a finite amount of 
time. This allows us to connect static quantities (dimensions) with 
dynamic quantities (entropies) in some cases, including two-dimensional 
diffeomorphisms. 

In Section 2, generalized dimensions and entropies are defined and the 
associated scaling functions are introduced. In Section 3, the spectra of 
effective Liapunov exponents are discussed and related to the quantities 
defined in Section 2. 

The other main purpose of the present paper concerns a problem 
which is perhaps less elegant but certainly not less important. In fact, prac- 
tically everything which is known exactly for dissipative chaotic systems 
only holds for hyperbolic systems. The only notable exception is the class 
of unimodal maps of an interval onto itself, the best known example of 
which is the "logistic map" 

x , + l =  1 - a x ~  (1.1) 

For such transformations, it is known ~ that chaotic orbits exist on sets of 
parameter values of positive Lebesgue measure. The same is not true, for 
example, for the H6non map (14) 

xn + l = 1 -  ax~ + byn 
(1.2) 

Y n +  l = Xn 

Notice that the logistic map is just the limit'b = 0. In spite of vast numerical 
evidence, it is not yet proven rigorously that the transformation (1.2) 
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indeed possesses a strange attractor, and not just a very long periodic orbit 
or a very long-lived chaotic transient. 

The source of difficulties is the possible occurrence of tangencies 
between the stable and unstable manifolds (homoclinic tangencies). At such 
points, the map is not hyperbolic and can be assimilated to the logistic 
equation (1.1) near the critical point x = 0 ,  with the attractor 
corresponding to the parabola y =  1 - a x  2 and the stable manifold 
corresponding to lines y = const. One effect of the vanishing slope at the 
critical point of Eq. (1.1) is the existence of a dense set of periodic windows 
in the logistic map. This is very similar to the Newhouse phenomenon in 
the H6non map (15)' even if a chaotic attractor exists at a parameter pair 
(a, b), there is an infinity of attracting periodic orbits arbitrarily close to it. 

Another effect of the critical point in Eq. (1.1) is that the density of the 
natural measure presents square-root singularities at its forward images. 
Thus, the dimension function D(q) is not equal to 1 for all values of q, 
although the natural measure is absolutely continuous, but displays a 
discontinuity in the derivative at q = 2  (see also Section4). (16) In the 
framework of the thermodynamic formalism, (4) this can be interpreted as a 
(rather trivial) first-order phase transition. For q ~> 2, the "phase" consists 
of the images of the critical point, while for q < 2, the "normal" points 
prevail. As a consequence, the formalism developed for hyperbolic 
systems (4) has to be modified when dealing with nonhyperbolic attractors. 
Analogously, for the H6non map, the high-q phase is dominated by the 
homoclinic tangencies. However, the transition point is no longer at q = 2. 

The logistic equation will be discussed in detail in Section 4 and the 
H6non map in Section 5. There, the implications of the nonhyperbolic 
nature of these systems for the metric entropies are also analyzed. 

Before closing the introduction, we should point out that essentially 
the same problems are expected in other systems with smooth folds of the 
attractor, such as the R6ssler model and the Duffing equation. (iv) 

2. DIMENSIONS,  ENTROPIES, AND SPECTRA OF 
SINGULARITIES 

2.1. Dimensions 

Usually, when dealing with fractal objects on which a measure /~ is 
defined, the dimension D is introduced to describe the increase of mass p(e) 
with size e 

P(E)~E ~ (2.1) 
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In general, however, fractals are nonuniform, i.e., the mss scales differently 
from point to point. Therefore, one is led to consider pointwise 
dimensions (1~) 

In p(e, x) 
~(x) = lim - -  (2.2) 

e~o In e 

where p(e, x) is the mass of an e-ball centered at x. 
In order to give a global estimate of dimension, it is then necessary to 

define a suitable average of the "local" dimensions ~(x). Originally, the 
order-q generalized (Renyi) dimensions D(q) were defined as (18'6'7) 

1 In Z~ pq(e) 
D(q)=q_ l!im0 lne for q>~0 (2.3) 

where a regular grid has been chosen and p~(e) is the mass in the ith box. 
Since the boxes will not be necessarily centered on points of the fractal, 
some of them will contain spuriously small mass, thus creating problems 
for negative q values. 

For any quantity A~ defined on each box with p~r  we denote the 
average ("#-weighted average") by ( A )  = ~2i p~Ai. Then, Eq. (2.3) can be 
written as (pq 1),~.,e( q l ) D ( q ) .  This suggests immediately a more general 
definition of the dimension function D(q): choose randomly (with respect 
to the measure/t ,  not to Lebesgue's measure) domains of size r~ and mass 
pi. The dimensions D(q) are then vaguely defined by (8) (see also Ref. 3) 

~ const for all ri ~ 0 (2.4) 

Notice that, for q ~ 0, this goes over the definition of the Hausdorff dimen- 
sion, provided that the domains are properly chosen. (8) 

Equation (2.4) can be simplified in essentially two complementary 
ways. In fact, if the result does not depend on the choice of the domains, 
provided that this is not too unreasonable (as it seems for all applications 
considered here), we can use balls of fixed radius r centered at randomly 
chosen points xi. In this case, Eq. (2.4) reduces to (6"7) 

( p(t)q- t ) = f d~(x)  p(r, x) q 1 ~ rr(q) for r ~ 0 (2.5) 

where 

r(q) = (q-- 1) D(q) (2.6) 
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Alternatively, if the measure is sufficiently smooth, one can take balls 
of equal weight p and variable radii rs(p) (centered at/~-random x~). This 
leads to (19'8) 

(r(p) r~q))~pl-q for p ~ O  (2.7) 

2.2. Spectra of Singularities: Isotropic Case 

The characterization of nonuniformity of the previous subsections can 
be reformulated by introducing a scaling function f(c~) describing the 
spread of values assumed by the pointwise dimension. (~ 3) Here, we review 
that approach, disregarding an~o,-'ropy, for later reference. 

Since in real calculations limit e--* 0 cannot be performed, it is 
useful to consider the ratio 

In p(~, x) 
,(e, x) -= in e (2.8) 

which we shall call the "crowding index" of the ball centered at the point x, 
following a suggestion by Kadanoff. t2~ We shall also indicate it with the 
same symbol as the pointwise dimension, since the two quantities coincide 
in the limit e ~ 0. 

Instead of describing nonuniformity through the generalized dimen- 
sions D(q), as in Section 2.1, one can proced as follows. ~v3~ Introducing the 
probability density P(a; e) of crowding indices 

P(c~; e) d~ = Prob{c~(e, x)~ [c~, ~ + d~] } (2.9) 

we can rewrite Eq. (2.5) as 

f d~ P(~; e) e (q 1)~ , - ~  e~(q) for e --* 0 (2.10) 

This scaling law is satisfied by the ansatz (1 3) 

P(c~; e) ~ Iln el 1/2 e~-s(~) (2.11) 

Here, the balls with crowding index ~ have been chosen according to their 
own probability. In the limit e--* 0, the integral is dominated by the value 
e(q) of c~ that yields the minimum of the expression qc~-f(cQ. Therefore, 
one has 

z(q) = min{q~ - f ( ~ ) } ,  f (~)  = min {qc~ - ~(q)} (2.12) 
q 
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i.e., the function f(cQ is the Legendre transform of r(q). In particular, if 
f (c0  and r(q) are differentiable, one gets the relations 

, , dr(q) df(~) (2.13) 
f (e )=qe(q) -z (q) ,  etq)= ~ , q= de 

We shall continue to write the Legendre tansform in the differential form 
(2.13), understanding that sometimes it has to be replaced by the more 
general relations (2.12). If the minima in Eqs. (2.12) are attained at a point 
in which f ( e )  is not differentiable, but has finite left and right derivatives, 
the prefactor Iln el m has to be replaced by Iln eL in Eq. (2.11). 

The function f ( e )  is called the spectrum of crowding indices (or 
"singularities"). Notice that m a x , { f  (e)} is the Hausdorff dimension of 
the (distribution-theoretic) support of #, while f(D(1))=D(1) and 
f ' ( D ( 1 ) ) = l ,  where D(1) is the information dimension. ~21) We shall 
indicate with e* the value of ~ where f(c~) is maximal, and with ~min (emax) 
the minimal (maximal) values at which f ( e ) #  -oe .  

Instead of applying definition (2.5), we could have used relations (2.3) 
or (2.7) to derive f (e ) .  In the box-counting case [Eq. (2.3)], we have to 
introduce the probability ~(c~; e) for a randomly chosen box i (of size e) to 
have crowding index c~(e, xi)~ [e, e + d e ] .  Here, "random" means with 
respect to Lebesgue's measure, conditioned on the nonempty boxes, i.e., 
giving the same weight to all of them. It is easily seen that P(c~; e) is 
approximately equal to P(e; e)/[N(e)p], where N(e) is the number of non- 
empty boxes and p is the mass corresponding to that value of c~. Since 
N(e) ~ e -m~ we find a scaling ansatz very similar to Eq. (2.11): 

(2.14) 

The case of fixed-mass balls is also similar. We now need the probability 
density P(e; p) for the crowding index of a ball of mass p around a point x 
chosen randomly with respect to #. With it, Eq. (2.7) reads 

e P ( ~ x ; p ) p - ~ ( q ) / ~ p  I q for p--,O (2.15) 

Comparison with Eqs. (2.11), (2.14) shows that 

P(~; P ) ~  I In Pl ~/2 p~ f~)/~, (2.16) 
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As a result, we can express f (~)  in the following three ways: 

- lim ln[P(~; e)/[ln el 1 / 2 ]  (fixed-radius balls) 
~ o  In 

f(cz) D(0) lim lnEP(~; ~)/tln e1~/2] = - for ~ ~< a* (box-counting) 
~ o  In 

ln[/~(~; p)/[ln p] 1/,2] 
- lira (fixed-mass balls) (2.17) 

p~0 In p 

Each of these three equations has advantages and drawbacks. First, as 
we already noted, box counting cannot be used for large a, corresponding 
to negative q. Second, using balls of fixed radius also creates problems, in 
practice, for large a: in fact, the measure in these balls is estimated by 
counting the number of points falling in them; for large a, balls with very 
low population (and, thus, with very poor statistics) will dominate. This 
does not affect estimates obtained from fixed-mass balls. There, the correc- 
tions due to finite statistics can be estimated exactly for uniform fractal 
measures and small q (large ~).(s) However, the arguments given in Ref. 8 
do not seem to hold for strongly nonuniform measures and large q (small 
~). Hence, we propose to use the first two of equations (2.17) for small 
[ ~ < D ( 1 ) ]  and the third one for large c~ [c~>D(1)]. 

Let us add some remarks about the meaning of f (a) :  it has been 
proposed (1'2) to interpret it as the "fractal" dimension of the set of points at 
which the crowding index is ~. This is, however, wrong if one identifies the 
"fractal" dimension with the box-counting dimension, (s) as is usually done. 
For instance, for the Feigenbaum attractor, the points with any definite c~ 
between ~min and amax are dense on the attractor (22) and thus the box- 
counting dimension of any of these sets of points is equal to D(0). Instead, 
at last in the case of hyperbolic systems, it is true that f ( a )  is the 
Hausdorff-Besicovitch dimension of the set of these points. (23) We have 
thus here the unusual and subtle situation that the fractal dimension does 
not agree with the Hausdorff dimension, and that the latter is clearly the 
more relevant. The same will be claimed to occur, in Section 5, for the 
homoclinic tangency points. 

2.3.  P a r t i a l  D i m e n s i o n s  

Strange attractors are, in general, not locally isotropic. A typical 
example is provided by the generalized baker transformation, m) which is 
locally the product of a continuum by a Cantor set. The same holds 
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roughly also for the H6non attractor, though it is modified there by 
singularities building up at forward images of homoclinic tangency points. 
For a precise characterization of the scaling properties of these sets, we 
need to generalize the covering procedure, including anisotropic elements 
like ellipsoids. Accordingly, new parameters have to be introduced, 
describing the directions of the different axes and the scaling velocity of 
their lengths. As long as we are interested in the product of fractal sets 
(defined along preassigned directions) and in the geometrical structure 
along those directions only, we can confine ourselves to consider ellipsoids 
of different axes ej. In this case, since the probability to fall in a generic 
ellipsoid factorizes into the product of the probabilities along the local 
coordinate axes, we can generalize Eq. (2.5) to 

with 

E 
<p(~)q--1 ) ~ 1-I C'; ](q) (2.18) 

j = l  

vj(q) = (q - 1) Dj(q) (2.19) 

where E is the Euclidean dimension of the space containing the fractal (i.e., 
the phase space) and the compact vector notation ~=  (el ..... ~e) is used, 
although it is to be noted that ~ (or ~) is not an element of the tangent 
space to the phase-space manifold nor of its dual space. The quantities 
Dj(q) are called (generalized) partial dimensions.(8'1~ They sum up to D(q) 
and are bounded between 0 and 1, for positive values of q: 

E 
Dj(q) = D(q)  (2.20) 

j = l  

0 <~ Dj(q) ~< 1 for q >~ 0 (2.21) 

A more general definition, applying to arbitrary fractals, is given in Ref. 8. 

2.4. Spectra of Singularities: Anisotropic Case 

We shall now discuss the distribution of crowding indices following 
from the ansatz (2.18). The main problem is to associate a crowding index 
c~ to an asymmetric ball. Equation (2.8) cannot be directly applied, since 
there is no single linear size e characterizing the ellipsoid. To overcome this 
difficulty, we write all axes ej in terms of a comon length scale e: 

ej = e"J (2.22) 
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In order to make this equation dimensionally correct, we should write a 
suitable prefactor s s, which, for simplicity, will be set numerically to 1, 
except in Section 3.2. The exponents t/j are positive and can be confined to 
the interval [0, 1] by setting e - m i n { e l  ..... ~E}. The usual definition of the 
isotropic case (ej = e, Yj) is recovered when t/s = 1, Yj. 

In the general case, with all q's different from 0 or 1, we can formally 
write 

E 

p(~, x ) ~  [-I e) ~j(x) (2.23) 
j = l  

since we are considering sets which are locally the product of independent 
structures along the E directions in phase space. The determination of the 
single ~j's from Eq. (2.23) would require E independent measurements: for 
each of them, only one axis is let to tend to 0, with the others small enough 
to be in the asymptotic region. The overall crowding index ~(~, x), measur- 
ing the dependence of p on ~, then depends on the choice of the r/j: 

c~(e, x) In P0:, x) 
= In e ~ q" ~t (2.24) 

where a = (~1, . . . ,  ~E)" By introducing, then, the probability density P(e; ~) 
for finding an index c~ in an ellipsoid with axes e, the average (2.18) can be 
rewritten as 

~P(o~;s ~'r(q) for e ~ 0  (2.25) 

in complete analogy with Eq. (2.10). The generalization of f(c 0 is 
straightforward: for any choice of q, we have a different scaling function 
f(c~; q), which is the Legendre transform of q" ~(q): 

d r ( q )  
c~(q)= ~ .  

dq (2.26) 

This implies that both c~(q) and f (e ;  q) are linear in I 1. They can thus be 
written as 

E 

c~(q) = 11 �9 a = ~ tljC~j with c~j(q) = drj (q) /dq (2.27) 
j - - I  

and 

f (a ;  rl) = ~ .  f(a) with f j =  qcts(q) - zj(q) (2.28) 

822/51/1-2-10 
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We conjecture that the functions ~j(q) are nothing but the partial pointwise 
dimensions [introduced in Eq. (2.23)] which dominate the integral in 
Eq. (2.25) for every given q. Notice, also, that each of the f j  depends only 
on the corresponding c~ s and not on the whole a. Moreover, the ~j are not 
independent of each other, but are functions of the common variable q = 
dfj(~j)/d~j. More precisely, let us consider a point x with pointwise dimen- 
sion c~=~(x). From Eq. (2.13), we obtain the value of q for which that 
pointwise dimension prevails and, from Eq. (2.27), we obtain ~j = ~j(x). The 
advantage of the above approach is that we never had to deal with the ill- 
defined partial crowding indices, working always with the overall one, as 
long as e r 0. 

Finally, the distribution of crowding indices satisfies the scaling law 

E 
P(~z;e)~llne[ 1/2 I-[ e~J fA~9)=llngll/2g n'(a f(~)) (2.29) 

j--1 

for e ~ 0, which is the obvious generalization of Eq. (2.11). 
The above relations are expected to hold not only for natural 

measures and not only for attractors, but also for repellers. However, for 
natural measures on attractors, Eq. (2.29) simplifies considerably, since we 
expect Dj(q) = 1 for j corresponding to unstable directions and for all q, at 
least for the case of strictly hyperbolic systems we are discussing now. This 
means that ~j= 1 and ~ ( 1 ) =  1, for the unstable directions [Eq. (2.12) has 
to be used then, instead of Eq. (2.13)]. As a consequence, the product in 
Eq. (2.29) can be replaced by a product over the stable directions in this 
case. A further simplification occurs if the Kaplan-York conjecture 
holds. ~24'25) Then, there is only one direction Jo with f j0(%)r  1, and 
Eq. (2.29) reduces to 

P(a; ~) ~ Iln el 1/2 ~(UO ~0)) 

2.5. Genera l i zed  Entropies 

While generalized dimensions could be defined for any fractal measure, 
generalized entropies are specific to dynamical systems. We first notice that 
any invariant measure in phase space also supplies a measure in the space 
of trajectories. Therefore, rather than averaging masses of balls in phase 
space, we consider the probability p(e; t) of a "sausage" in trajectory space, 
of spatial size e and time length t. Quite generally, we expect that ~2s'26) 

IP(~t) q - l \  (q l)K(q)t ---+0 and t ~ (2.30) ~'r(q) / ~ e for ~ 
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where e may or may not be a fluctuating function of the position. As it 
stands, Eq. (2.30) is somewhat vague, and we shall indeed see later that it is 
not strictly correct for nonhyperbolic systems. For the moment, we neglect 
this problem. 

Just as in the case of the generalized dimensions, there are (at least) 
two ways to render Eq. (2.30) more explicit. One consists in" taking a fixed 
grid in trajectory space (i.e., the "sausage" is a cylinder se(27)); the other in 
averaging over sausages around trajectories chosen randomly with respect 
to the invariant measure #. 

The second method was effectively used in Refs. 28 and 29 to estimate 
the metric entropy K(q = 1) by computing its lower bound K(2): the num- 
ber of pairs of orbits remaining closer than e, during a time t, decreases like 
C K(2)t 

Using a fixed grid is the essence of computing entropies from symbol 
sequences,. More precisely, we consider symbol sequences obtained by 
generating partitions. By definition, these are such partitions for which the 
limit ~--*0 is not necessary, since it is implied by the limit t ~  oo: 
arbitrarily fine partitions are obtained by intersecting sufficiently many 
images and preimages of the generator. 

Given a symbol sequence { .... s,_l, st, s,+l .... }, we indicate with S , =  
{Sm ..... s,} a finite subsequence of length t, and call p{S,} the probability to 
observe St at a random position in a very long string (we consider now 
discrete time, but this is no restriction). The generalized entropies K(q) are 
then defined as 

p{St}q~e(1 q) K(q)t for t --* oo (2.3t) 
{s,} 

where the sum is performed over all subsequences St arising from a 
generating partition. For a binary partition in which all sequences occur 
with equal probability, such as for the map x' = 1 - 2x 2 (or for the balan- 
ced invariant measure on a Julia set), this gives immediately K(q) = In 2 for 
all q. 

2.6. Crowding  in Trajectory Space: Fixed Generators 

In analogy with the crowding index in phase space [Eq. (2.8)], let us 
now define a crowding index 

c%(t, S , )=  - l l n  p{St} (2.32) 
t 

in trajectory space. Here, e - '  plays the r61e of e in Eq. (2.8) and the 
sequence S, corresponds to the box i. Furthermore, let us call P(c~0; t) the 
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probability density for a sequence of length t to have crowding index ~o, 
once it has been picked randomly among all allowed sequences, indepen- 
dently of their frequency of occurrence. Then, Eq. (2.31) can be written as 

f d ~ o P ( C ~ o ; t ) e  q ~ ~  [~~ for t ~ o O  (2.33) 

with To (q )= (q -1 )K(q ) .  Comparison with Eq. (2.14) yields immediately 
the proper scaling law for P(~o; t) as ~2) 

P(~o; t )  ~ x~ t t  e [f~176 K(O)]t 

with fo the Legendre transform of to: 

~o(q)  = d % ( q ) / d q ,  fo(~Zo) = q~o(q)  - % ( q )  

(2.34) 

(2.35) 

As pointed out by Farmer, (3~ the mtric entropy can be understood as 
the information dimension in the space of symbol sequences. Similarly, 
fo(C~o) can be interpreted as the Hausdorff dimension of the set of "points" 
in symbol sequence space with pointwise dimension eo .(12) 

2.7. Crowding  in Trajectory Space: No Fixed Generators 

Equation (2.30) contains more information than Eq. (2.31), since it 
yields the simultaneous dependence on t and e. We shall now use this, by 
taking sausages around trajectories chosen randomly with respect to /~. 
Indeed, we shall even go further and consider elliptic cross sections, with 
axes ~= (~ ..... e~) directed along the invariant manifolds (stable and 
unstable). We use the common scale oo as in Eq. (2.22) also for time, by 
writing 

e o =- e "~ = e - t  (2.36) 

Accordingly, we will indicate pointwise entropy and partial dimensions 
with a - (C~o, ~1 ..... ~e), and the size of space-time "balls" (sausages) with 

= (e0, el ..... eE). Denoting, then, by P(~'; ~) the probability density to find 
an overall (i.e., spatiotemporal) crowding index ~' [Eqs. (2.8) and (2.32)], 
we can perform the average (2.30) to obtain 

f de '  P(c(; ~)~ 'z ' (q  1) ~ ~l I -'c(q) for s ~ 0 (2.37) 

where the first component of x(q) is r o ( q ) = ( q - 1 ) K ( q ) .  Arguments 
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identical to those of Section 2.4 lead then to a product scaling ansatz 
completely analogous to Eq. (2.29), 

E 

P(c~'; e) ~ Iln el 1/2 I~ ~;J fJ(~J) for all ej --* 0 (2.38) 
j - 0  

We see, thus, that the ansatz (2.30) corresponds to a complete fac- 
torization of the probability p(e; t) into space and time contributions, 
except for logarithmic terms. Such a factorization would be obtained if not 
only the attractor, but also the invariant measure on it were locally a direct 
product everywhere. There are two subtle points related to that. 

The first is that we cannot, in general, expect the attractor to be 
topologically a direct product. Instead, its topological properties can be 
very different even in simple cases. (31) 

The second is that Eq. (2.38) requires more than factorization nearly 
everywhere to be valid. Indeed, if we are interested only in properties 
holding on sets of measure 1, we could have restricted ourselves to the 
single value q = 1. We see, thus, that we have to be quite careful, since most 
of rigorously proven theorems only hold for sets of positive measure. 

3. EFFECTIVE LIAPUNOV EXPONENTS 

3.1. Spectra of Effictive Liapunov Exponents 

In Section 2, we dealt with quantities characterizing geometric scaling 
properties of generic fractal sets. When studying strange attractors, one has 
the additional information coming from the underlying dynamics, and, in 
particular, Liapunov exponents can be used to estimate dimensions and 
metric entropies. (25,32) 

In order to study these connections, it is useful to make a distinction 
similar to that between pointwise dimension [-Eq. (2.2)] and crowding 
index [-Eq.(2.8)] for dynamical quantities as well. While Liapunov 
exponents measure the asymptotic divergence of infinitesimally neighboring 
trajectories, effective Liapunov exponents refer to large but finite 
times. (26'33) More precisely, we consider an infinitesimal ball of radius 
e(x, t = 0), centered at x at time 0. Some time n later (we consider again 
discrete time), it will be transformed into an ellipsoid with semiaxes ej(n), 
j = 1,..., E. Effective Liapunov exponents are defined as 

2j(n,x)= 1 lim In ej(n) 
n~(~,o)~o e(x, 0) (3.1) 
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For strictly hyperbolic systems, this definition is equivalent, as far as 
applications are concerned, to the following: in each point x, there is an 
E-bein of tangent vectors uj(x) pointing along the invariant manifolds. 
Calling T the tangent map, we can define effective Liapunov exponents 
alternatively by 

2j(n, x) = 1 In H Tn%(x) II (3,2) 
n Iluj(x)ll 

For nonhyperbolic systems, these two are no longer equivalent. In Sections 
4 and 5, we shall use the former definition. It has, e.g., the advantage that 
for systems with constant Jacobian (such as the H6non map) the sum of 
effective Liapunov exponents is also constant, which would not be guaran- 
teed by definition (3.2). Another advantage of (3.1) is that the 2j(n) are 
ordered according to their magnitude (just as the true Liapunov 
exponents), while Eq. (3.2) would not preserve the ordering in correspon- 
dence of homoclinic tangencies. 

In the following, we shall use the vector notation ~=(21 ..... 2e) 
without indicating the dependence of k on n. We discuss the distribution 
P(k; n) of effective Liapunov exponents, in the limit n--* 0% by studying, 
first, the cumulant generating function G(n, z) defined as 

G(n, z) = In f dy(x) exp[nz" ;~(n, x)] (3.3) 

where z =  (z~,..., ze) is an arbitrary vector with real components. In par- 
ticular, G(n, 0) = 0 and the cumulants of n~. are the derivatives of G(n, z) at 
z = 0. The Liapunov exponents are, finally, 

)'J = ,limoo 1 8G(n, z) ==o 
n 8zj 

(3.4) 

Our essential assumption in the folowing will be that the effective 
Liapunov exponents, being defined via the logarithms of products of n 
Jacobi matrices, behave essentially like averages of n random variables 
correlated only over short times. This leads immediately to the ansatz that 
G(n, z) depends linearly on n: 

G(n, z) ~ ng(z) for n ~ oo (3.5) 

For the first-order cumulants, this is of course compatible with Eq. (3.4), 
while for the second-order cumulants, it corresponds to Gaussian central 
limit behavior. It breaks down only in cases with strong long-time 
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correlations, as in the case of the intermittent map of Ref. 34 and in area- 
preserving maps with both regular and irregular regions. (3s) 

In terms of the probability density P(A; n) to find effective Liapunov 
exponents ~,(n) ~ [A, A + dA],  the ansatz (3.5) reads, then, 

E 

f I~ dAj P(A; n) 
j = l  

exp(nz.A)~exp[ng(z)] for n --+ oo (3.6) 

This leads, in a by now standard way, to the following scaling law for 
P(A; n), (12) 

P(A;n)~nE/Zexp[-nO(A)] for n ~ o o  (3.7) 

with 

~b(A) = z.  A ( z ) -  g(z) = max{z - A - g(z)} (3.8) 
z 

The functions A(z) and z(A) which dominate the integral (3.6) are, then, 

Ai(z ) _ @(z) and, analogously, zj(A) = 0~b(A) (3.9) 
~?zj OAj 

Notice that the functions Aj are mutually independent, just like the zj, 
in contrast to the c~j(q). 

We shall call the function ~b(A) the spectrum of effective Liapunov 
exponents. It is the analog of c~-f(c0, introduced for crowding indices. In 
the next two subsections, we shall relate O(A) to the spectra of crowding 
indices and to generalized dimensions and entropies. 

3.2. Relation with Metric Entropies and Partial Dimensions: 
Global Approach 

To derive relations between Liapunov exponents and metric entropies 
or fractal dimensions one can follow two alternative approaches: a global 
one, based on implicit expressions for average quantities, or a local one, 
based on eplicit relations between the corresponding spectra. 

In this subsection, we summarize the results of the first approach, 
indicating its limitations, which are then investigated in Section 3.3. 

We first discuss metric entropies, starting from Eq. (2.30), generalized 
to sausages with arbitrary elliptic cross sections and written as (2s'26) 

<,,q ,) 
,~q.~(q) ~ e  - ( q - l ) K ( q ) t  (3.10) 
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where the vector notation refers only to the spatial part as in Eq. (2.22), 
and does not include the zeroth component, defined in Eq. (2.36). 

The average is taken with respect to #. We observe that the trajec- 
tories remaining for a time t in such a sausage of width e around x(t'), 
t ' e  (0, t), are those that started off in an ellipsoid centered on x(0) and 
characterized by q' with 

, ~ l j - t 2 j ( t , x ) / l n e  if 2j(t,x)~>0 

q J =  ~ qj otherwise 
(3.11) 

The probability p(~; t) is then equal to the mass p(g; 0) contained in the 
initial ellipsoid. Hence, inserting Eq. (3.11) into Eq. (3.10), we obtain a 
statement about the joint distribution of crowding indices and effective 
Liapunov exponents: 

e r l ' ' ~ ( q )  e(r l  ' n) (3.12) 

For hyperbolic strange atractors, the crowding index along the expanding 
directions is not a fluctuating quantity (e i= 1), so that the first term in 
Eq. (3.12) can be extracted from the brackets. According to Eq. (2.18), such 
a term is equal to 1, and we obtain (25) 

"Co(q)==-(q-1)K(q)= - g ( 1 - q  ..... 1 - q, 0,..., 0) (3.13) 

where the nonvanishing arguments correspond to the unstable directions. 
Taking the derivative with respect to q, we obtain from Eq. (3.13) 

j+ 

~0(q) = ~ Aj(1 - q  ..... 1 - q ,  0 ..... 0) (3.14) 
j=l  

where j+  is the number of expanding directions. Finally, f0 can be simply 
expressed as f o ( ~ o ) = C Z o ( q ) - O [ A ( - ' c + ( q ) ) ] ,  where ~+(q )=(1 -q , . . . ,  
1 - q , O  ..... 0). 

While this should hold for hyperbolic attractors, it does not apply to 
more general systems. First of all, in general (e.g., for strange repellers, for 
nonhyperbolic attractors, and for nonnatural measures) ~j ~ 1 even for the 
expanding directions. Second, in these cases the left-hand side of Eq. (3.12) 
cannot in general be factorized for q ~ 1. For examples, see the next 
subsection, Sections 4 and 5, and Ref. 36. 

Equation (3.14) generalizes the well-known Pesin formula, which 
holds for q = 1. For q =  1, Eq. (3.12) does factorize in all cases discussed 
above, and we obtain the generalized Pesin formula (37'26'38) 

j+ 

K(1)= ~ 2jDj(1) (3.15) 
j--1 
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To discuss the relations between Liapunov exponents and fractal 
dimensions, we start from Eq. (2.18) rewritten in the following form: 

•q. "c(q) / ~ 1 f o r  ~ ~ 0 (3.16) 

After n iterations, an ellipsoid with axes with axes ~ centered at x will be 
transformed into an ellipsoid with the same mass but with axes 

ej = ~)  = ~":e ''~j(x) (3.17) 

We assume now that the evolution be invertible, as, e.g., for the H6non 
map (but not for the logistic equation). By substituting (3.17) into (3.16) 
and taking into account the backward invariance of the measure /z, we 
obtain, then, 

(p( ~,)q 1 ) 
/~E-'t(q) exp [ - -nk ' ' t ( q ) ]  ~ 1 (3.18) 

This relation can be interpreted as a constraint on the partial dimensions 
D(q), which has to be satisfied in order to conserve in time the (average) 
generalized volume at the lhs of Eq. (3.16). It constitutes, essentially, a 
statement about the joint distribution of crowding indices and expansion 
rates, the latter evaluated over trajectories starting from the reference ellip- 
soids. At variance with Eq. (3.12), the first term in Eq. (3.18) also includes 
contracting directions, for which the partial crowding index is fluctuating. 
However, for sufficiently large n, we can conjecture that the two quantities 
become independent for hyperbolic systems, and the average factorizes 
again. Combining Eqs. (3.18) and (3.16), we obtain the simple relation 

g(--x(q)) = lim _1 l n ( e x p [ - n k .  ~(q)] ) = 0 
n~oo  n 

(3.19) 

The existence of correlations between crowding indices and Liapunov 
exponents will be extensively discussed in the next subsection in terms of 
local variables. Since Eq. (3.19) constitutes only one constraint on the par- 
tial dimensions D j, it cannot of course determine them univocally. Cases in 
which all Dj can be explicitly obtained from Eq. (3.19) are two-dimensional 
maps with constant Jacobian and conformal maps. These will ne discussed 
in more detail in Section 3.4. In other cases, all Dj are fixed if the Kaplan-  
Yorke conjecture (see below) is true. 
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Differentiating Eq. (3.19) with respect to q and using Eqs. (2.13), (3.8), 
and (3.9), we obtain 

E 

Aj(-~(q))  ~j(q) = 0 (3.20) 
j = l  

For q =  1, the Aj are the true Liapunov exponents 2j and c~j(1) are the 
partial information dimensions. For this special case, Eq. (3.20) reduces 
thus to (26'37) 

N 

2jDj(1) = 0 (3.21) 
j = l  

This relation leads immediately to the well-known Kaplan-Yorke 
formula (24'25) as an upper bound on D(1), which was indeed proven 
rigorously in Ref. 37. As stressed in Ref. 25, relation (3.21) can be inter- 
preted as a conservation equation for the missing information about the 
actual state of the system: the j t h  partial dimension is essentially the 
information density per digit of a coordinate along the j th  invariant 
submanifold, and the Liapunov exponent is the information flow velocity 
in these digits. Their product is thus a flow rate, and Eq. (3.21) tells us that 
the divergence of the flow is zero. 

For q ~ 1, the interpretation of Eq. (3.20) is less straightforward. In the 
next subsection, the meaning of the functions Aj(-~(q)) and ~j(q) will be 
discussed. 

3.3. Local A p p r o a c h  

In the last subsections, we derived global relations for hyperbolic 
strange attractors under suitable assumptions on factorization of joint 
probabilities. The main results can be recovered from a purely local 
approach, which, in addition, allows discussing the role of correlations 
between dimensions and Liapunov exponents. 

The relation between metric entropies and Liapunov exponents can be 
derived by considering the probability p(s, n, x) to find a trajectory that 
remains for a time n within a sausage of elliptic cross section ~ around the 
reference orbit starting from x. We assume that p(~;, n, x) scales, for n ~ 
and ej -~ O, as 

"E 

In p(~, n, x) ~ ~ ~j(x) In ~ i -  n~o(X) + const (3.22) 
j - - 1  

where the ~j(x) are the partial pointwise dimensions and ~o(X) is the 
pointwise entropy. 
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As in Section 3.2, we again notice that the measure of the sausage is 
equal to the measure of an ellipsoid around the starting point x, the points 
of which generate orbits belonging to the sausage: p(a, n, x) = p(~', 0, x), 
where the semiaxes ~j are given by Eq. (3.11). Inserting this into Eq. (3.22), 
the limit n ~ cc and zj ~ 0 yields 

E 

:co(X) = ~ ~j(x) 2j(x) 0[2s(x)] (3.23) 
j = l  

where 0 is the Heaviside function. Notice that both :co(X) and the 2j(x) refer 
to the orbit originating from x. 

Taking into account that, for the natural measure on hyperbolic 
attractors, :cj= 1 for all expanding directions and all x, we see that 
Eq. (3.23) is indeed precisely the same as Eq. (3.14). In fact, due to 
Eq. (2.13), a unique q corresponds to each value of ~, while a unique :c is 
attached to each point x. Therefore, we can write q = q(x) and insert it into 
Eq. (3.14): as a result, we obtain relation (3.23), provided that we identify 
A j [  - z + [q(x)] ] with 2j(x). 

We should point out that Eq. (3.23) holds more generally than for 
hyperbolic attractors only. In particular, it applies also to repellers, where 
the :cj(x) are different from 1, along the expanding directions. For one- 
dimensional repelling maps, one finds 

:c(x) = [ ; 4 x )  - f l ] / 2 ( x ) ,  :Co(X) = :c(x) ; 4 x )  (3.24) 

with/3 being the escape rate. The pointwise entropy entropy :co(X) is thus a 
product of pointwise dimensions and Liapunov exponents, where the latter 
are computed over the trajectory starting from x. Therefore, the average 
(3.12) does not factorize whenever the pointwise dimensions along the 
expanding directions are not constant. Equation (3.23) can be interpreted 
as the local counterpart of the Pesin formula (3.15). 

The constraint (3.20) on partial dimensions can be obtained by a 
similar local approach, but more care is required in this case. We use 
Eq. (3.22) for n = 0 and notice, first, that the invariance of the measure 
implies p (e ,x )=p( t ; ' , x ' ) ,  with x '=F( ' ) (x )  and ej given by Eq. (3.17). 
Furthermore, pointwise dimensions are invariant under the smooth map 
from x to x'. This is particularly obvious for periodic points, where we can 
take n as a multiple of the period and obtain the manifestly local version of 
Eq. (3.20) 

E 

:cj(x) 2j(x) = 0 (periodic points) (3.25) 
j - - 1  
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Again, this should hold more generally than for natural measures on 
hyperbolic attractors only. 

For nonperiodic points, however, the additive constant in Eq. (3.22) 
cannot be neglected and things are not so easy. While Eq. (3.25) still 
should hold nearly everywhere [since 2j(x)= )oj nearly everywhere], we 
could find an everywhere correct local version of Eq. (3.20) only for 
natural measures on hyperbolic attractors, for which ~j(x)= 1 along all 
unstable directions. In such a case, we take ej= O(1) for the stable direc- 
tions and ~j=O(1)  for the unstable ones. Taking now the limit b ~  o% 
with the end point x' kept fixed, we can neglect the additive constant in 
Eq. (3.22) and obtain 

~ j ( x ' ) = -  ~ cg(x')~[j(x' ) (3.26) 
unstable stable 

where ~j(x)= limn~ ~ 2j(x, - n )  is the Liapunov exponent of the trajectory 
leading to x, instead of starting from x. Equation (3.26) is exactly the same 
as Eq. (3.20)). We just have to insert q=q(x') in the latter and identify 
Ag[ -~ [q (x ' ) ] ]  with ~[/(x'). 

The subtle difference in the argument between Eqs. (3.23) and (3.26) is 
explicitly verified for the generalized baker transformation (n) 

[(rlXn, Yn/Pl) if y ,  ~< Pl (3.27) 
(x"+~'Y"+l)=~(r2x,+l--r2,(y,-p~)/p2) if y,>p~ 

with Pl + P2 = 1 and r~ + r2 < 1. A trajectory of this map can be encoded 
by the symbol sequence { or, I n = 0, -t- 1, -t- 2,... }, where 

a ,  = s g n ( y , - p l )  (3.28) 

The natural measure is such that the sequence of symbols is uncorrelated 
with prob(a = - 1 ) =  Pl and prob(a = +1 )=P2 .  The partial dimension e2 
at the point x, is a function of ak with k < n only, while e~ = 1. The effective 
Liapunov exponents 2j(Xm, n) depend only on the ak with m ~< k < n + m. A 
thin horizontal strip around Xm of height Ay=exp[-n2~(Xm, n)] and 
width Ax = 1 is mapped, after n iterations, onto a thin vertical strip with 
Ay= 1 and Ax=exp[n22(Xm, n)]. Conservation of probability, together 
with Eq. (2.2), yields 

~2(Xm + n ) =  --)~l(Xm, n)/22(xm, n) (3.29) 

Taking the limit n --* 0% we obtain indeed Eq. (3.26). The partial pointwise 
dimension along the contracting direction depends on the Liapunov 
exponents computed over the past history of the point, at variance with 
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partial dimensions along expanding directions (see the case of repellers), 
which depend on "future" values of the Liapunov exponents. This justifies 
the assumption of factorization after Eq. (3.18): the first factor in brackets 
depends on az(X), which is a function of "old" Liapunov exponents, while 
the second factor is computed in the future and they become independent 
for n ~ oe (in the special case of the generalized baker transformation, they 
are independent for any n). 

In spite of this subtlety, the local approach is conceptually simpler 
than the global one. We should not forget, however, that it is, in general, 
numerically impossible to measure spectra of pointwise quantities directly. 
The only way to use relations (3.23) and (3.26) numerically seems, in 
general, via the global approach outlined in the previous subsections. 

The problem that for nonperiodic points one encounters difficulties 
that are absent for periodic points is rather uncommon and seems to be 
related to the fact that we are interested in properties of point sets of 
measure zero. Sets of nonzero measure on strange attractors seem to be 
well characterized by the periodic orbits nearby, in general. That this need 
not be the case, if one studies the questions treated in this paper, will be 
found again in Section 4. 

Finally, we show the relations between the spectrum f(a2) of crowding 
indices and that of Liapunov exponents ~b(A). For this purpose, we must 
express both distributions in terms of the same scaling parameter. This can 
be done by referring to constant-mass coverings, already introduced in Sec- 
tion 2 for crowding indices [-see Eq. (2.16)]. We can now do the same for 
effective Liapunov exponents. Consider again map (3.27): since exp(-n21) 
represents the mass in the horizontal strip, we fix it equal to some value p 
and determine a variable number of iterations n(x) such that p =  
exp[-n(x)  21(x, -n(x))] .  The associated distribution of 21, 22 is of the 
form [see Eq. (3.7)-] 

P(A, p) = [ln p[ 1/2 pC~A)/A1 (3.30) 

Under these assumptions, we can conjecture that the probability to find a 
crowding index a2 = -A1/A2 is [see Eqs. (3.29) and (2.16)] 

[In Pl l/2 pl F(~2)/~2 = Iln Pl 1/2 f p,k(Al,--AI/~Z)/AI dA~ (3.31) 

In the next subsection, we compare this local approach with the global one 
of the previous subsection, showing with some simple examples that they 
are in agreement. 
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3.4. Special Two-D imens iona l  Maps 

For all hyperbolic attractors in one and two dimensions, Eqs. (3.13) 
and (3.14) simplify to 

to(q) = -g~l)(1 - q), ~o(q) - dg(1)(z)-- z = (3.32) 
dz 1 q 

where g(l~(z) is the generating function for the first (positive) effective 
Liapunov exponent. We have already considered here that Dl (q )=  1 and 
thus that ~1 = 1 and zl = q - 1 .  For the spctra of ct 0 and AI, this implies 

fo(~o) = ~o - ~b(1)(~o) (3.33) 

This equation holds, indeed, also for one-dimensional maps. Further 
simplifications arise if one has more structure: 

(i) Generalized baker transformations of the type 

y' = 2y mod 1 
(3.34) 

x' = FL2y3(X ) 

where [z] is the integer part of z, and Fo and FI are two functions 
mapping the interval [0, 1] into two disjoint subintervals Ji~ [0, 1]. In 
this case, one has 21 = In 2. Also, all cross-correlations between 21 and 22 
are absent, leading to 

g(z l ,  z2) = zl In 2 + g(2)(z2) (3.35) 

As a consequence, Eqs. (3.20) and (3.14) can be combined to 

- A z ( - ~ ( q ) )  ~2(q)= In 2 (3.36) 

This is a result for the projection of the invariant measure onto the non- 
trivial axis. This projection is also the maximum entropy measure of the 
repeller x ' = F T ~ ( x )  for x ~ J i .  In the latter context, Eq. (3.36) was first 
derived in Ref. 23. Equation (3.36) is a particular case of Eq. (3.29), with 
21 = l n  2. 

(ii) Maps with constant Jacobian: writing the Jacobian a s  I J [  = 

exp( -B) ,  we have 

P(A; n) = 6(A1 + A2 + B) P~I)(A1 ; n) (3.37) 

where P(~)(A~;n) is the distribution of the first effective Liapunov 
exponent. As a consequence, we obtain 

g(z l ,  z2) = g(l)(zl - z2) - B 2 ' 2  (3.38) 
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Equations (3.19) and (3.20) become, then 

g ( 1 ) ( r a ( q ) -  q + 1)= -B%(q)  

and 

(3.39) 

dg.,(z) 
- A * ( q )  B ,  A*(q)= (3.40) 062(q) A ~ ( q )  + dz z=.c2(q)_q+ 1 

After some manipulations, this leads finally to  (39) 

060f2(062) = 062f0(060), 062 = 060/(060 + B)  (3.41) 

For actual computations of dimension, Eq. (3.41) seems to be most useful. 
Equations (3.40) and (3.41) are again in full agreement with the results of 
the previous section. In fact, from Eq. (3.29), recalling that 22 = - B - 2 1 ,  
we recover the first of (3.40), once 062 and 21 are interpreted as the local 
crowding index and the effective Liapunov exponent corresponding to the 
same box, as described above. 

Equation (3.41) can also be derived in a straightforward way from 
Eq. (3.31). In fact, in the case of two-dimensional maps with constant 
Jacobian, there is only one pair 21, 22 that yields a preassigned 062. The 
occurrence frequency of 062 is therefore equal to the frequency of 21 , 
provided that 062 and 21 are related by Eq. (3.40). Equation (3.41) is, then, 
a consequence of (3.31) and (3.40). 

(iii) Generalized baker transformations of the form (3.27). Following 
the local approach, it is clear that Eq. (3.41) holds for all two-dimensional 
maps in which there is a one-to-one correspondence between the positive 
and the negative Liapunov exponents. The map defined in Eq. (3.27) 
belongs to this class. In fact, 21 is, in general, given by 

e,,.q = p F i p y ( , , - i )  (3.42) 

where i is the number of times the first multiplier l i p  1 occurred in n 
iterations: 

21 + In P2 
i -  

l n ( p 2 / p , )  
n (3.43) 

The second Liapunov exponent is determined by 

e n 2 2  _ i n i 
- -  r 1 r 2 (3.44) 
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By eliminating i between (3.43) and (3.44), we can express 22 as a function 
of 21: 

ln(rl/r2) 
2 2 = - -  ( 2  l -{- in P 2 )  + In r2 (3.45) 

ln( p 2/p ~ ) 

Accordingly, by using Eq. (3.45) in place of the first of Eqs. (3.40), we find 
that Eq. (3.41) also holds for the generalized baker transformation, a result 
which also follows from Eq. (3.31). 

(iv) Conformal maps: here, one has 21(z)= 22(z), z = x +  iy. Thus, if 
the map is chaotic, one does not have an attractor, but a repeller. In the 
case of a rational map z ' =  F(z), the repeller is called a Julia set34~ The 
most interesting invariant measure is the balanced invariant measure, ~4~ 
obtained by iterating backward with equal probability for all roots of F x. 
This measure can be related to the natural measure on the attractor by the 
folowing simple trick: in addition to the two variables x = 9 l ( z )  and 
y = ~(z), include a third variable w e [0, 1]. If F -1 has p roots, denoted by 
{ Fo~,..., Fp~} ,  consider the three-dimensional map 

--1 (w, z)' = (pw mod p, FEpwl(Z)) (3.46) 

where Ix]  denotes the integer part of x. It is clear that the natural measure 
of this map is uniform in the w direction and that its projection onto the z 
plane gives exactly the balanced invariant measure. 

System (3.46) has one positive Liapunov exponent 2x = ln  p and two 
negative ones of equal magnitude -2(z ) .  The generating function for 
Eq. (3.46) can then be written as 

g(z1, Z2,  Z3)  : Z 1 In p + g(S)(_ (z2 + z3)) (3.47) 

where g(J)(z) is the generating function for the Liapunov exponent 2 of the 
original Julia set. We denote by D its dimension [not that of the attactor of 
Eq.(3.46)] and use v = ( q - 1 ) D .  Equations (3.13) and (3.14) are now 
trivial [ K ( q ) =  In p] ,  and Eqs. (3.19) and (3.20) become 

g~J)(r(q)) = ( q -  1) In p (3.48) 

and 

A ( - v ( q ) )  a(q) = In p (3.49) 

For q = 0  and q =  1, Eq. (3.48) agrees with rigorous results obtained in 
Ref. 41. 
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4. T H E  L O G I S T I C  M A P  

The main problem with the formalism developed in the last two sec- 
tions is that it is not clear how far it can be extended to nonhyperbolic 
systems. In order to find its limitations, we thus study the simplest non- 
hyperbolic system, before treating the more interesting H6non map, in the 
next section. 

4.1. Fully Deve loped  Chaos 

The simplest case is that of "fully developed" chaos, i.e., 

x '  = F ( x )  = 1 - 2x 2 (4.1) 

In this case, everything can be computed exactly by using the conjugacy to 
the "roof" map (42) 

y ' =  1 - 2 [ y l  for x = s in-~ (4.2) 

The natural measure has the density 

d~(x) 1 
dx  re(1 - x 2 )  1/2 

(4.3) 

For didactic purposes, the generalized dimensions of this density are 
computed by box counting, with box size e, without using Eq. (4.2), which 
would yield the same result. The weights of the first and last boxes (those 
at x = _1) are propositional to x/e,  while the weights of all other boxes 
are roughly proportional to e. Thus, we see that 

i/~ 

pq ~ e q  1 ._[_ const- F. q/2 (4.4) 
i = l  

and, inserting this into Eq. (2.3), we get immediately (16) 

D ( q )  = 

1 if q~<2 

q if q~>2 
2(q - 1 ) 

(4.5) 

Hence, D ( q )  is not unity for all q, in contrast with what we would expect 
for hyperbolic systems. 

822/51/1-2-11 
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Using Eq. (2.12), we obtain the spectrum of crowding indices as 

f (~ )  = J'2~-- 1 for �89 
(4.6) 

otherwise 

Notice that Eq. (2.13) would have only predicted f ( 1 / 2 ) = 0  f ( l ) = l ,  
without the linear behavior in between. The complete from (4.6) can also 
be obtained directly from /~(~; p), using Eq. (4.5) and the third of Eqs. 
(2.17). 

As is clear from the conjugacy to the roof map and from Eq. (2.31), 
the generalized entropies are K ( q ) = l n 2  for all q. From Eq. (3.13), we 
would then expect that the Liapunov spectrum is also trivial: r  ~ for 
A g= In 2 and g(z)= z In 2. This is, however, not true. The conjugacy (4.2), 
in fact, gives 

f1-1 1 2nz f~, c~ z eos(~y/2) (4.7) e6"(z) = d#(x)I/~"~(x)'lZ =~ dy 

where y ,  is the nth iterate of y. For - 1  < z ~ 1, the zeros of the cosines 
have no influence on the asymptotic behavior: hence, g(z) = G,(z)/n = In 2. 
For z >  1, the zeros of the denominator prevail. Since cos(Try,/2),,~ 
2ncos(~y/2), for 1 - [ y [ ~ < 2  ~, the integrand is roughly 2 ~z, for 
1 - lyF ~< 2-n, and negligible otherwise. This leads to g(z) = ( 2 z -  1) In 2. 
Finally, consider the zeros of cos(zyJ2) .  There are 2 ~ -  1 of them, each 
with a slope of order 2 ". Together, they imply that the integral diverges at 
z = - l ,  such that exp[G,(z)]~2"/(z+l) at z ~ - l .  Combining 
everything, we have 

oo for z ~ < - i  

g ( z )=  z l n 2  for - l < z ~ < l  (4.8) 

( 2 z -  1)ln 2 for z~>l 

and 

I l n 2 - A  for A~<ln2 

~b(A)= A - l n 2  for ln2~<A~<ln4 (4.9) 

oo for A ~> In 4 

The nontrivialities of the Liapunov spectrum are thus due to the unstable 
fixed point at x = -1 ,  where the slope is twice as large as in the average, 
and to the critical point ar x = 0. Equation (4.9) implies that the scaling 
function fo(A)= A -  O(A) displays a straight-line behavior with slope 2 for 
A~<ln2, is constant (equal to ln2)  for l n 2 ~ A ~ < l n 4 ,  and is - o o  for 
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A > In 4. Indeed, effective Liapunov exponents assume all values between 
- ~ and In 4. 

We should point out that a different result would have been obtained 
if we had based the definition of effective Liapunov exponents on periodic 
orbits, with the generating function G(n, z) being an average over all orbits 
of period n. In that case, we would find the same value 2 = In 2 for all 
orbits, except for the fixed point x = -1 ,  where 2 = In 4. In particular, the 
spectrum of Liapunov exponents of periodic points cannot extend to 
negative values (as it does for nonperiodic points), as this would mean that 
we have attracting periodic orbits and no chaotic attractor. 

Since the pointwise dimension is ~(x)=�89 at x =  _+1, we see that 
Eq. (3.23), written now as ~o(X)=~(x)A(x), is indeed satisfied in all 
periodic points with 70(x)= 1, including at x = _+1. There, the anomaly in 
2 is exactly compensated by an anomaly in ~. But Eq. (3.23) does not hold 
at all points, including nonperiodic ones: for x = 0 and all its preimages, 
our ansatz (3.22), from which (3.23) was deduced, is simply wrong. Instead 
of Eq. (3.22), one has in these points different asymptotic behaviors in the 
two limits n~> Ilnet ~ and [ln el ~>n ~ ~ :  

21 "x/-~ for n > l n e / l n 4  (4.10) 
p(8, n, x = 0) ~ {2e for n < In e/In 4 

Accordingly, pointwise entropies cannot be defined via Eq. (3.22) at x = 0 
and at all its preimages. We should not be surprised, then, that these points 
create problems in the global approach if they make any contribution 
there. As we have seen, they indeed do contribute at sufficiently large q 
( q > 2  in the present case) and sufficiently small ~ (~ < 1). Intuitively, the 
problem with these points is that due to the folding, the map cannot be 
linearized there and our simple arguments of Section 3 break down. 
Expressed more technically, the bounded variation principle of Ref. 23 
breaks down in these points, and the action of the map in any small but 
finite neighborhood is not characterized by the Liapunov exponents at 
these points. 

Instead of using Eq. (3.22), effective Liapunov exponents and point- 
wise dimensions could also have been defined via generating partitions. 
Call F the generating partition into x > 0  and x < 0 ,  and F ~") its nth 
preimage. Each interval of F ~n) defines one cylinder set of length n. The 
integrals of the natural measure # over such intervals decrease in the 
(geometric) average as e x p [ - n K ( 1 ) ] ,  while their lengths decrease as 
exp(-n2) .  For any point x # 0  that is not a preimage of x = 0 ,  we can 
define ~o(X) by #~x n) ~ exp[-n~o(X)] ,  where #(~") is the mass of the interval 
in F ~") containing x, and define 2(n, x) analogously via the length of these 



162 Grassberger, Badii, and Poli t i  

intervals. For x = 0 and for its preimages, we can take the largest of the 
two intervals next to them. We see easily that this gives e0(x)=  In 2 at all 
points. For  the Liapunov exponents it gives 2 = In 4 at x = +1, and 2 = In 2 
for all other points, including x = 0. Equation (3.23) holds then indeed for 
all points. The Liapunov spectrum ~b(A), defined via sums over all interval 
sin F (n), consists then only of the linear piece between A = l n 2  and 
A = In 4, without the linear piece at A < In 2 in Eq. (4.9). 

The last argument, based on a generating partition, thus leads to the 
simplest results in the case of fully developed chaos in one-dimensional 
maps. Its drawback is that it is not so easy to apply numerically to other 
one-dimensional maps, such as those discussed below, and even more so in 
higher dimensional systems, such as the H6non map. 

4.2. "Typical" Chaos 

It is thus interesting to see whether such problems appear when the 
critical point is not mapped onto any periodic orbit, after any finite number 
of iterations. We call this "typical" chaos, since it appears on a set of 
control parameter values of nonzero measure. We shall now show that also 

30000 

2, 
= .{ 

15000 

i n v a r i a n t  d e n s i t y  

x ~ = 1 . 8 5  - >(2 

t 

- 1 . 0  2.0 

5 

I I 
0. 1.0 

• 

Fig. 1. Density of the natural measure of the map x.  +'1 = 1 - 1.85x~. Notice the spikes at the 
forward images of the critical poirit x = 0 .  The kth image is labeled by k. 
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in this case the formalism of Sections 2 and 3 does not hold without 
modifications. 

First, we see that the density of the natural measure has square-root 
singularities at all forward images of the critical point, as shown in Fig. 1. 
These singularities, being denumerable, should have exactly the same effect 
on the generalized dimensions and on the spectrum of crowding indices as 
the same singularity had in the fully developed case. We thus expect Eqs. 
(4.5) and (4.6) to hold again. 

As a numerical test of the latter, we show in Fig. 2 the box-counting 
distribution P(c~; e) for a = 1.85 and 5 x 105 nonempty boxes on a log-log 
plot, rescaled in such a way that the curve should approach f ( e )  versus 
for e ~ 0, according to Eq. (2.17). The support of # has been renormalized 

points per b o x  
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Fig. 2. Histogram of the distribution of the number of boxes with a given weight for the 
logistic map at a = 1.85. The number of nonempty boxes was 5 x 105; the number of iterations 
was 108. The data are displayed on a log- log plot with scales chosen in such a way that the 
horizontal axis is e and the vertical would be f ( c0  in the limit s - * 0 .  The dashed line 
represents Eq. (4.6). 
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to 1, with a proper choice of the unit length. For comparison, the conjec- 
tured f(~) is also shown in Fig. 2. We find indeed reasonable agreement. 
The function D(q), as obtained from this by Legendre transform, is shown 
in Fig. 3 (dashed line). Also shown there is the direct estimate of D(q) via 
Eq. (2.3) (solid line). We see that they agree very poorly. This should not 
be too surprising, since the moment s  (p(8)q-1) are analytic in q and a 
singularity as in Eq. (4.5) can only develop in the limit e ~ 0. This is very 
similar to a phase transition in statistical mechanics, which only appears in 
the thermodynamic limit. It should be a warning against computing f(~) 
by first evaluating the moments and then by performing a backward 
Legendre transform. (3) While this can speed up convergence, it might have 
led some authors to overlook possible phase transition-like behavior in 
nonuniform fractals, such as those occurring in connection with a Joule 
energy distribution on conducting percolating c l u s t e r s .  (43) We might add 
that such phase transitions do exist for Joule energy distributions on 
conductors in the form of some Sierpinski-type l a t t i c e s  (44) and for the 
Cantor set of irrational winding numbers in critical circle maps. (45) 

We should comment on the dashed curve in Fig. 3, obtained by 
Legendre-transforming the data of Fig. 2. Its poor agreement with the exact 
result (dotted line) can easily be understood and, accordingly, might have 
been corrected: in fact, in plotting Fig. 2, we have taken the entire support 
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Fig. 3. The dimension function D(q) from the data shown in Fig. 2. (-..) Exact result. ( - - )  
Legendre transform of the curve in Fig. 2 [in the version of Eq. (2.12), divided by q -  1]. ( - - )  
from Eq. (2.3), but with e = 2 • 10 -6, instead of taking the limit e ~ 0. 
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[a -a  2, a] of the masure as our unit length (we iterated the map x'= 
a - x  2). If we take, instead, the length unit as an open parameter, we can 
shift both axes by essentially the same arbitrary amount. In particular, we 
can shift them such that the maximum is at e = 1, in which case we also 
find f(c~ = 1) = 1 and ~min = 1/2. This improves considerably the agreement 
in Fig. 3. 

Perfect agreement is achieved if we take into account that the bin at 
~mi, contains a single nonempty box, whence asymptotically f ( ~ m i n )  should 
be shifted down from 0.2 to zero. Without discussing these corrections 
again in detail, we apply them in the next subsection when we deal with the 
H6non map. 

We next study the Liapunov spectrum. Numerical results, again for 
a =  1.85, are shown in Fig. 4. More precisely, we plot the quantity 
-(1/n)ln[P(A;n)/x/-n], for n = 2 0 ,  40, and 60, obtained from 6x108 
iterations. According to Eq. (3.7), the curves in Fig. 4 should tend to ~b(A) 
for n --* oc. Indeed, we see rather slow convergence. 

As in the case of fully developed chaos, the spectrum of Fig. 4 is not 
confined to positive A. Of course, there cannot be any periodic orbits with 

"7" 

I 

0 I _ _  

- . 2  - . 1  

- - I  . . . .  i 

n = 6 0  

.I .2 .3 .4 .5 .6 

Fig. 4. Probability densities P(A; n) of efective Liapunov exponents A for the logistic map 
with a =  1.85 and with n = 2 0 ,  40, and 60. The number of iterations was 6x  108 . The 
logarithmic scale is chosen such that the curves should become plots of ~b(A) versus A for 
n ---~ O O .  
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a negative A, since they would be attractors. 4 The problem is that a strange 
attractor is the closure of all periodic orbits that, in hyperbolic systems, fill 
densely the support of the Liapunov spectrum. Naively, one might have 
expected the same in the present case, but we see again that we must be 
more careful. On the other hand, the tail in the Liapunov spectrum for 
small A, as observed in Fig. 4, can easily be explained heuristically. Let us 
consider sequences of N iterates that give an effective Liapunov exponent A 
smaller than or equal to zero. Such a A can only arise if one of the N 
iterates is close to the maximum. Therefore, we need to evaluate the mass 
contained in an interval of size e such that an initial condition belonging to 
it will yield an effective Liapunov exponent (over N iterates) smaller than 
A. Assuming that the initial n iterates fall "far" from the maximum (i.e., on 
generic points), they will yield a multiplier e n<~>, with ( 2 )  being the 
average Liapunov exponent. The (n + 1 )th multiplier will be of the order of 
the distance from the maximum: that is, of the order of the length ee n<~> of 
the interval, after the first n iterates. Finally, the contribution of the 
remaining N - n - 1  iterates will be e (N n - l ) ( 2 ) .  Imposing that the total 
multiplier, given by the product of these three terms, be equal t o  e NA, we 
determine e as 

e ~ const �9 e N(2) (4.11 ) 

giving ~b(A)~const -A.  The constant can be estimated from Eq. (3.32) 
with q = 2  and from Eq. (3.8). They give, respectively, g ( 1 ) ( - 1 ) = - K ( 2 )  
and [using ~b(0)' = -1  ] 

g ( ' ) ( -1)  = -~b(0) (4.12) 

Furthermore, we expect the linear behavior of ~b(A) to hold not only for 
A -+ -0% but for all 2 < 2c, where 2c is defined as the largest value of A at 
which the slope of ~b(A) is -1 .  Taking all this together, we find 

O ( A ) = K ( 2 ) - A  for A~<2c (4.13) 

where the presence of K(2) is due to the coincidence of the spectra of 
metric entropies and effective Liapunov exponents, for A > 2c. It is also 
useful to consider the value A = 2min where the spectrum A -  ~b(A) is equal 

4We monitored,  during the iteration, against being on a periodic orbit  by running 
simultaneously to the trajectory {x.  } another  trajectory { y .  } with Xo = Yo, but  with y .  + 1 = 
F~Z)(y.). While x n performs one cycle, yn performs two, and thus must  overtake x n once. 
Hence, one only has to moni to r  that  never y .  = x . ,  for n ~> 1, in order  to be sure not  to be 
on  a cycle. (46) 
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to zero (for example,  in Fig. 5, 2rain ~0 .2) .  Since the spect rum fo(~0) of 
metric  entropies  is nonnegat ive,  we expect it to differ f rom A -  ~b(A) for 
A < )~min- The  p rob lem of the possible coincidence of the two spectra  in the 
in termediate  region •min ~< A ~< 2c remains  open. In  addit ion,  further  infor- 
ma t ion  comes f rom the spec t rum of L i apunov  exponents  of  periodic orbits,  
which stops at 2 = 2Pin, where 2Pin is the smallest  L i apunov  exponent  of a 
periodic trajectory.  In  the case invest igated numerical ly  ( a =  1.85), a m o n g  
all orbits  with per iod ~< 33, we found 2Pmin ~ 0.237 (this value belonging to a 
pe r iod - l l  orbit).  Clearly, we mus t  have )~min~<~Pmi n ~< 2c. Whenever  these 
three quanti t ies coincide, the positive parts  of three spectra  (metric 
entropies,  effective L iapunov  exponents ,  and periodic orbi ts)  also coincide. 

With  regard to the dis tr ibut ion of metr ic  entropies,  we note that  the 
kneading  sequence does not  yield the heaviest  contr ibut ion,  in contras t  
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Fig. 5. Heavy lines: histogram of weights of symbol sequences for the logistic map with 
a = 1.85. The length of the symbol sequences is t = 23. The number of iterations was 1.2 x 10 7. 

The logarithmic scale is chosen in such a way as to give the spectrum of temporal crowding 
indices f0(~0) for t ~ ~.  Light lines: function fo(A)=--A- q)(A), with ~b(A) approximated by 
the n = 60 data of Fig. 4. 
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with what one might have guessed. In fact, assuming again that the orbit of 
forward images of the critical point be "typical," the weight of the kneading 
sequence over N iterates is readily computed. All trajectories whose foward 
symbol sequence (of length N) coincides with the kneading sequence start 
from points lying in an interval of width 

I~ - N ( 2 ) / 2  (4.14) 

around x = 0 at time n = 0. Since the invariant measure is nonzero and 
smooth around the critical point, we conclude that the mass of the 
kneading sequence decreases according to Eq. (4.14). With the Liapunov 
exponent of the period-11 cycle smaller than (2)/2, the symbol sequence of 
this cycle becomes heavier than the kneading sequence for N sufficiently 
large. This has been verified numerically, noting that, for N > 20, one finds 
increasingly more sequences that have a larger weight than the (beginning 
of the) kneading sequence. 

By comparing the spectrum of pointwise entropies fo(~o) with that of 
effective Liapunov exponents, we see that they are in satisfactory agreement 
for A>0.3. A qualitatively similar behavior has been found for the 
spectrum of Liapunov exponents from periodic orbits. We might add that 
the maximal 2 (equal also to the maximal pointwise entropy) is "~max and 
corresponds to the fixed point x = 0.513. 

5. THE H I 'NON M A P  

The source of problems with Eq. (1.2) is the presence of homoclinic 
tangency points, where the map is no longer hyperbolic. The actual 
occurrence of these tangencies is suggested by Fig. 6, where the attractor, 
which coincides with the unstable manifold of the fixed point 

x * =  y * =  { b -  1 + [ ( b -  1)2+4a]l/2}/(Za) 
is shown together with part of the stable manifold of that fixed point. The 
blowup shown in Fig. 7 suggests that if we followed the stable manifold 
further, the two manifolds would come closer and closer to touching each 
other. If there are any homoclinic tangencies, it is obvious that there must 
be a dense set of them, if the atractor is indeed ergodic. Since such 
tangency points are in many ways similar to the critical point, x = 0 of the 
logistic equation (1.1), we expect that the H6non map behaves essentially 
as the latter, with only minor modifications due to its two-dimensionality. 

5.1. Liapunov Spectra 

Since the H6non map has a constant Jacobian, we have only one 
independent Liapunov exponent and the discussion of Section3.4(ii) 
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Fig. 6. The H6non attractor with parameters a = 1.4 and b =0.3, together with part of the 
stable manifold of the manifold of the fixed point (x*, y*). The unstable manifold coincides 
with the attractor. 

applies. The distributions P(~)(A1; n) with n =  12 and 24 are shown in 
Fig. 8. Again, the presentation is such that the curves should converge to 
~b~)(A1) versus A1 for n ~ 0o. Figure 8 indicates a faster convergence than 
in the logistic map. This is not surprising: in fact, any quantity such as an 
effective Liapunov exponent is an average over all leaves in the Cantor  set 
of Fig. 6. Hence, deviations from scaling arising on a single leaf are 
smeared out. Second, we see that also in the present case the leading 
Liapunov exponent can be negative for any finite n. This creates the same 
problem as in the one-dimensional case, namely that the spectrum cannot 
agree with the spectrum of Liapunov exponents of periodic orbits. At the 
same time, however, we can apply essentially the same argument as in the 
last section in order to estimate ~b(~)(A1) for A1 ~<0. 

We first observe that there is no indication in Fig. 7 that homoclinic 
tangencies are avoided. Second, Fig. 7 suggests that further magnification 
would show that, near the forward images of the "prominent" homoclinic 
tangency points (HTPs)  the stable manifold approaches a set of straight 
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Fig. 7. Enlarged part of Fig. 6, with the stable manifold extended further. There does not 
seem to be any tendency that homoclinic tangencies are avoided by any unknown mechanism. 

lines, while the unstable manifold can be approximated by a Cantor set of 
parabolas. More precisely, assume that P = (x, y) is a HTP. Then its image 
F(P) and its preimage F-I(P) are also HTPs. In the limit n ~ ~ ,  the 
radius of curvature R~u n) of the unstable manifold at Fn(P) tends to zero, 
while the radius R~ -n) of the stable manifold tends to zero at F n(P). The 
"prominent" H T P  Po is the one where 1/R(~ m + 1/R~ ") is minimal. The above 
approximation by parabolas and straight lines should hold in the 
neighborhood of F"(Po) for large n, after a suitable n-dependent linear 
rescaling. A simple "model" of what happens near a forward image of a 
prominent H T P  is thus the following: we replace the unstable manifold 
with a Cantor set of parabolas and the stable manifold with a dense set of 
parallel straight lines. The action of the map in this neighborhood is 
approximated by a linear transformation with contraction by a fixed factor 

along the stable manifold and expansion by a factor/3 = [b[/~ transverse 
to it (see Fig. 9). The invariant measure is assumed to be smooth along all 
branches of the unstable manifold. Finally, small values of A 1 are assumed 
to arise only from trajectories that pass near one of the tangency points. 
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Fig. 8. Spectrum of the first effective Liapunov exponent of the H6non map  with a =  1.4, 
b = 0.3, computed from 4 • 109 iterations. The plot is such that  again we obtain the scaling 
function ~btll(Al) versus A1 in the limit n ~ co. The two curves correspond to ( - - )  n = 12 and 
( - - )  n = 2 4 .  

These assumptions allow us immediately to compute the tail of the 
Liapunov spectrum. By the same arguments as in the logistic map, we find 
a linear behavior with slope 1, 

(9(I)(A1)=K(2)-A1 for A1 < 2 1 , m i  n (5.1) 

except that now this cannot be extended down to A1 = - ~ .  Instead, the 
curve has to be cut off at A 1 = 1 I n  Ibf. 

Figure 8 is fully compatible with this prediction and suggests that our 
model is basically correct. In the next subsection, we discuss its 
implications for the dimension scaling function. 

5.2. Dimensions and Spatial Crowding 

In order to obtain the fractal dimension directly (without using the 
Liapunov spectrum), we first follow a box-counting procedure. In Fig. 10, 
we show the histogram of the distribution of box weights obtained from 
coverings with 28672 • 28672 and 14336 • 14336 boxes (the number of non- 
empty boxes were ~ 9 •  105 resp. ~ 4 •  105). The scales are again such 
that the curve should tend to f (~ )  versus ~ for e - * 0  and for ~ < ~ *  
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Fig. 9. 
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[3. Ib l / •  
Simplified "model" of the behavior near hyperbolic tangencies, such as those in Fig. 7. 

The map is there approximated by a linear transformation. 

(corresponding to positive q; for negative q, box-counting has the problems 
mentioned in Section 2). 

The minimal ~ at which f(cQ r  is ~min = limq~ ~ D(q)<~0.84. The 
fact that this value is less than 1 shows that Dl(q)< 1 for large q. Since 
Dl(q) = 1 for small q, there must be a singularity at some point q = qc. If 
the slope of D(q) is discontinuous at this singularity, we must see a linear 
portion in the curve of f(cQ versus e, with slope f ' ( e ) =  qc. Indeed, such a 
behavior can be observed in Fig. 10. The critical value obtained from it is 

qc ~ 2.4. 
Notice that the height of the maximum in Fig. 10 would yield 

D(0) ~ 1.3, in disagreement with values obtained from other methods. This 
should not bother us too much: the same effect of low convergence was 
found in Fig. 2 as well. Alternatively, one might estimate f ( e )  by first 
evaluating the moments  and then by performing a backward Legendre 
transform, as has been done in other cases. (3'43) This would yield the 
correct value of D(0), but it would smoothen D(q) and f ( e )  so strongly 
that any sign of singularity would be lost. This is exactly the same problem 
as in the one-dimensional case. 
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Fig. 10. Histogram of the distribution of the number  of boxes with a given weight for the 
H6non map  with with a = 1.4 and b = 0.3. The number  of nonempty  boxes was g 9  x l0 s and 
the number  of iterations was 4 x  109 . ( ) Grid containing 28762x28762 boxes; (.-.) 
14336x 14336 boxes. The data are displayed in a log-log plot with scales such that the 
horizontal axis is ~ and the vertical would be f(c~) in the limit e ~ 0. 

As an alternative to box-counting, we tried to estimate f (7)  by 
counting the number of points in randomly located balls with fixed radius, 
or by measuring the distances of kth nearest neighbors. With both 
methods, it was impossible to obtain a statistics as good as with box-coun- 
ting. However, for negative q (where box-counting fails), we found rather 
strong deviations from scaling from the distribution of kth nearest 
neighbors. This seems to be a real effect, since this method should work 
best there (see Section 2), and it agrees with the fact that (somewhat less) 
strong scaling violations were found also for q>~ 0. (47'48) These deviations 
are, however, still smaller than those found in the logistic map (see also 
below). We conclude that Fig. 10 represents our best direct information on 
f ( e )  for ~ ~< ~*. In the following, we will confront it with indirect infor- 
mation obtained from Liapunov spectra and with the implications of the 
simple "model" discussed in the last subsection. 

First, we show in Fig. 11 the scaling function g(l)(z), obtained from 
the n = 24 data displayed in Fig. 8, using the Legrendre transform in the 
version (2.12). The kink at z = -1  is a direct consequence of Eq. (5.1). 

Next, Fig. 12 shows D(q) obtained from the data in Fig. 11 through 
Eq. (3.39). Also shown in Fig. 12 are estimates of D(q) from the data of 
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Fig. 11. Scaling function gll)(z) obtained from the n = 24 data of Fig. 8 by Legendre trans- 
forming, using Eq. (2.12). For z < - 1 ,  we draw both the result expected from ( - - )  random 
orbits and (...) periodic orbits. Neither can be extracted from the data directly. They rely 
instead o n  A l , m i  n = 1 In b and on 2Pin ~ K(2)/2, respectively. 
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Dimension function of the H6non map, obtained f rom(- - )  Fig. 10, via Eq. (2.12), 
( - - )  from the same data using moments, and (-- )  from Fig. 11, using Eq. (3.39). 
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Fig. 10, using both the Legendre transform of the f(c0 curve (dashed line) 
and the moments of the probability distribution [Eq. (2.3); dashed-dotted 
line]. First we notice the quite substantial difference between the latter two 
curves. This difference is somewhat less dramatic than in the one-dimen- 
sional case, but it shown again the danger in extracting dimensions and 
scaling functions from the moments if these dimensions have singularities. 

That there is a singularity in D(q) is most clearly shown by the fact 
that D(q = oe) < 1 from the data of Fig. 10. The latter is also supported by 
a study of distances of altogether ~ 10 H pairs of points in a time series [the 
actual number of computed distances was much less, as only distances 
between close pairs (e < 2 6) were considered]. Due to this, it is clear that 
we cannot use Eq. (3.39) for arbitrarily large q, as it would give 
D ( - o c )  >~ 1. We claim that Eq. (3.39) is nevertheless correct for q ~< qc and 
that qc corresponds to the argument of g(~ in Eq. (3.39) being -1 :  

z = % ( q c ) - q c +  1 = -1  (5.2) 

[It is only below this qc that the result of Eq. (3.39) is shown in Fig. 12.] 
Our reason for this conjecture is similar to that in one-dimensional maps: 
due to the asymptotic behavior (5.1), g(1)(z) is dominated, for z < -1 ,  by 
nonhyperbolic points (homoclinic tangencies), and the arguments of Sec- 
tion 3 are expected to break down there. For z >~ -1 ,  the "normal" points 
dominate and we expect Eq. (3.39) to be correct. From Eq. (5.2) we find 

D2(q=qc)= q'------~2 (5.3) 
q c -  1 

and, from Eq. (3.39) evaluated at qc, we get %(qc)=K(2)/B, yielding, 
finally, 

qc= 2_t K(2) 
Ilnbl (5.4) 

Numerically, this gives qc ~ 2.24, in reasonable agreement with the less 
precise value found from the f ( e )  spectrum. 

It would be interesting to know the Hausdorff dimension of the set of 
homoclinic tangency points. From what we said above, a positive dimen- 
sion would mean that the stretch of constant slope in Fig. 10 does not 
extend down to O~min, but ends at some e with f(c~ ) > 0 ,  below which 
f(c~) is again strictly convex. The Hausdorff dimension of the set of 
homoclinic tangency points with pointwise dimension c~ would just be f (e) ,  
for c~ < e_ .  The data shown in Fig. 10 do suggest such a behavior, although 
they are far from being conclusive in this respect. 

822/51/l-2-i2 
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6. C O N C L U S I O N S  

We have extended the formalism of the spectra of singularities to 
multidimensional anisotropic systems, introducing partial pointwise dimen- 
sions ej and partial scaling functions fj(~j). We found relations between 
these, Liapunov exponents, dimensions, and entropies by two complemen- 
tary approaches: one purely local, involvirig only pointwise quantities, and 
one global, involving averages that yield generalized dimensions and 
entropies. The allowed us to finds links among the various scaling functions 
f(a),  fo(~o), fj(~j) (with j r  and ~b(A). 

These relations are unproblematic for hyperbolic systems. In the non- 
hyperbolic case, instead, things are much less trivial, as illustrated on the 
examples of the logistic and H6non maps. For instance, spectra of 
Liapunov exponents computed from periodic orbits do not coincide over 
the full range with those computed from randomly chosen aperiodic orbits. 
Not surprisingly, the above relations also have to be modified there. We 
claim that the needed modifications are, in some sense, minimal: they are 
only felt in the range of small Liapunov exponents, and only at small 
pointwise dimensions. While the periodic points are typical for the 
"normal" part of the spectrum and for a set of points of measure one on 
the attractor, the "exceptional" points are essentially those where the stable 
and unstable manifolds are tangent to each other. 

This separation into two "phases" of points is clearly manifested as a 
singularity, similar to a first-order phase transition, in the generalized 
dimension function D(q). For q below a critical value qc, the normal 
(hyperbolic) points dominate, while above qc the "phase" consists of the 
nonhyperbolic tangency points. 

This interpretation is strongly suggested by the thermodynamic 
formalism involving, in particular, Legendre transforms between dimension 
functions ("free energies") and scaling functions ("internal energies"). What 
is still missing is a statistical mechanical treatment. In the analogy between 
dynamical systems and statistical mechanics, it is the members of a 
generating partition that correspond to the states of a spin in a one-dimen- 
sional lattice. Phase transitions in a one-dimensional spin model can only 
appear if there are either long-range forces or if the spin has infinitely many 
states. Translated into our present case, this means either that we must 
work with infinite partitions, if they should be Markov, or that there must 
be long-time correlations in the symbolic dynamics, if we work with simple 
(e.g., binary) partitions. As we said, we have not worked out any details. 
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